Using PSPSM to Develop Software Requirements & Architectural Design

SEPG 2004

Ellen George Steve Janiszewski PS&J Software Six Sigma

PS&J Software Six Sigma

Copyright © 2003, PS&J Software Six Sigma All rights reserved.

Introduction

- No guidance on the specifics of applying the Personal Software ProcessSM (PSPSM) to other life cycle activities is available in the standard training
- As interest in PSPSM grows in the community, there is a need for concrete illustrations of how to apply PSPSM across the entire software development life cycle
- We discuss how to extend PSPSM to cover other life cycle phases and illustrate with some real project examples covering requirements analysis and database architecture design

PSPSM Process Flow

PSPSM Across the Life Cycle

- PSPSM can be generalized to other life cycle activities by
 - –substituting different product development & evaluation activities;
 - -changing the size metric;
 - -modifying estimating algorithm;
 - -defining an appropriate defect type standard.

Defining the Product

- Step number one is clearly defining the product produced by each life cycle phase
 - –Standard PSPSM 's product is new & modified lines of code (LOC)
 - –Coding standard and line counting standard precisely define a LOC and how it should be counted
- A good product standard is the first requirement for applying PSPSM to other activities
 - -Should control product content and format
 - Products produced by the same activity should not be too dissimilar or it will be impossible to pick a useful size metric

Creating a Good Product Spec

- Template based product standards are frequently a good way to control content and format
 - Requirement to complete all template elements controls content
 - Format of the template controls the format of the product
- Adopting a commercial standard like a requirements specification language, Entity Relationship Diagrams (ERDs) or Universal Modeling Language (UML) can a good way to put structure into diagrammatic designs but frequently needs some additional specification of content and format

Excessive Product Variability

- A loose product standard will allow so much variability that it will be impossible to find a useful size metric for the product
- Content can vary from person to person and may not be consistent from product to product for the same person
- Format will vary from person to person and may not be consistent from product to product for the same person
- The standard can allow so many optional elements that there will be a large variation in content and format from product to product

Optional Content

- Example: A design standard that says design may be documented by textual description or UML diagram
- Example: A design standard that includes a required class diagram, optional textual description, an optional state diagram, and optional activity diagram
- Example: A design standard that simply says to use UML with no guidance on content or format
- Eliminate excessive optional content or break up products with lots of optional content into optional products!

Product Size Metrics

- Measuring productivity [unit product size/hr] and product quality [defects/unit product size] require a product size metric
- A good size metric will have three characteristics
 - -the effort required to produce the product will be proportional to its size
 - -the number of defects injected in producing the product will be proportional to its size
 - -it is easy to count, preferably via automation
- The "best" size metrics have the highest degree of linearity
- If there are multiple size metrics with comparable characteristics, it is a matter of convention to pick one and use it

Picking a Size Metric

- Measure the effort required by a developer to create 5 – 10 products with sizes that span the typical range of product sizes
- Make a list of candidate size metrics & measure the size of the products with each metric
- Perform a linear regression of the effort on each of the size for each metric and select the metric that has the best fit
- Verify that the same metric works for other team member's data
- If no candidate metrics provides an adequate fit, consider revising the product standard before looking at regression on multiple variables or higher order regression

Selecting a Size Metric - Example

- Product: Product training course modules
- Product standard tightly controlled both format & content
- Format control automated via PowerPoint® master slide feature
- Homogenous product mainly text without a significant number of complex diagrams
- All candidate metrics performed reasonably well, probably because the standard caused them to be correlated
- Lines was selected as size metric

Copyright © 2003, PS&J Software Six Sigma All rights reserved.

PS&J Software Six Sigma

Estimating Product Size

- PSPSM uses proxy-based estimates
 - -Historical distribution of product sizes of different types is used to estimate the size of similar products
 - -For a normal distribution with mean μ and variance σ^2 , a medium size product is estimated to be μ units, a large product μ + σ units, etc
- For code, the distribution of average class size/method closely follows a log normal distribution, and a transformation is used to treat it as a normal distribution

Estimating Effort and Defects

- Linear regression is used to estimate development effort from the size estimate and a second time to correct the size estimate
 - -typically necessary to identify and eliminate outliers from the data set before proceeding
- Expected number of defects in a new product estimated from historical defect densities for similar products
- Applicable to most software related products

Requirements Size Metric

- Case Study: requirements specification for a large distributed system
- Requirements standard based on a template requiring specific types of textual information
- Brainstorming identified candidate size metrics: requirements, pages, paragraphs, words
- Size-Effort correlation used to screen potential size metrics
- Preliminary data indicated that any of the proposed size metrics could produce a good correlation with effort
- "Words" was tentatively selected as the size metric based on ease of automated counting
- Algorithms to estimate the size of and effort to write a section of a requirements spec were developed & validated

PS&J Software Six Sigma

Requirements – Size Distribution (1)

- After more data was available, the next step was to develop a size estimating algorithm
- Histogram provides a preliminary assessment of shape of requirements size distribution function

- Not clear that it is log normal distribution like those we see for module sizes
 - Template format kept the minimum size of a requirement at about 40 words so distribution looks a lot more symmetrical

Requirements – Size Distribution (2)

- Probability plots marginally better for normal distribution
- χ² test can't reject either with p-values of 0.95 and 0.93 respectively!
- Both density functions look quite similar for our data set
- Both produce similar size estimates
 - most significant difference shows up in the size of a very small requirement
 - Either are adequate as the basis of a size estimating algorithm

	Normal	LogNormal
VS	29.7	36.8
S	45.1	46.0
m	60.5	57.6
	76.0	72.0
vl	91.4	90.0

Log Normal was selected

Copyright © 2003, PS&J Software Six Sigma All rights reserved.

Requirements - Size Time Correlation

 $r^2 = 0.77$ slope = 0.06 min/word intercept ≈ 0 p-Value = 9×10⁻⁷

 Good correlations between size and effort for personal data resulted in straight forward application of PROBE for requirements in the 0 – 5000 word range.

PS&J Software Six Sigma

Page 17

Requirements – Process Stability

 Personal productivity data indicates a stable process with a mean of about 20 words/minute and a standard deviation of about 10.7 words/minute

Some Observations

- PROXY based size estimating works best as a personal metric since it is sensitive to writing style
- The PROXY classification scheme can be standardized easily however
- Keep the number of product element types in the classification scheme to a minimum
 - Don't have multiple types that have essentially the same statistics
- If you don't have enough data, you can combine types until you have enough to split them apart

Some More Observations

- Estimating data sets should be representative of their author's work and style
- Estimating data sets should
 - -have at least 5 points; 10 or more is much better
 - -they should have a high r² at least 0.5, 0.75 or more is better
 - generate regression equations that have reasonable slopes and intercepts
 - be checked for stratification and partitioned if necessary
- Outliers should be identified and eliminated
 - –can be identified using run charts or prediction intervals
- Estimating data sets should be validated based on a history of producing reasonable results

PS&J Software Six Sigma

Page 20

Database Table Size Metric

- Case Study: design of a medium size database consisting of a about 20 data modules, each module having multiple tables, relationships, & validation rules
- Design standard called for capturing the design with Entity Relationship Diagrams (ERDs).
 - Included templates for data type definition, validation rules, relationships, triggers, etc.
 - -Capable of generating SQL automatically
- Brainstorming identified candidate size metrics: tables, fields, LOCs (SQL)
- Size-Effort correlation used to screen potential size metrics and "fields" was tentatively selected as the size metric
- Algorithms to estimate the size of and effort to design a data module were developed & validated

PS&J Software Six Sigma

Selecting a Data Module Size Metric

- "Tables" and "Fields" yielded a very similar r² until an obvious outlier was eliminated
- "Fields" then gave better correlation and ultimately performed better in estimation

PS&J Software Six Sigma

Page 22

Outlier Management

- XmR chart confirms 7th point is an outlier —Removing it significantly improves r²
- Possible presence of a stratification variable or process shift

PS&J Software Six Sigma

Size Correlation Analysis

- High r² indicates good correlation
- Small average error and symmetric distribution of residuals indicates unbiased estimator
- XmR charts indicates a relatively stable situation

Database Table Size Distribution

Page 25

PS&J Software Six Sigma

- LogNormal has the best fit
- Provides reasonable estimate although it deviates significantly for small values

	<u>Normal</u>	LogNormal	<u>Weibull</u>
VS =	-8.604213818	1.862993874	1.121367549
S =	0.496138705	3.70297303	3.669157559
m =	9.596491228	7.360200937	8.306123544
=	18.69684375	14.62947675	14.75270276
vl =	27.79719627	29.0782265	22.53279402
ChiSquared =	41.10526316	5.736842105	6.578947368
p-Value =	7.7278E-07	0.570790863	0.47399392

Copyright © 2003, PS&J Software Six Sigma All rights reserved.

Database Design Size-Time Correlation

 Good correlation between size and effort for personal data resulted in straight forward application of PROBE for requirements in the 0 – 100 field range.

 $r^2 = 0.95$ slope = 2.13 min/field intercept = 0.7 min p-Value = 2.4×10⁻⁶

References

Look through the presentation CD for our talk on

"Applying Functional TSP to a Maintenance Project"

presented at this conference on Wednesday, March 10 at 1:30 PM.

For additional information visit our web site or contact us at:

Ellen George201- 358-8828EllenGeorge@SoftwareSixSigma.com

Steve Janiszewski 201- 947-0150 Steve Janiszewski@SoftwareSixSigma.com

www.SoftwareSixSigma.com